①失水 ②硫化 ③失衡 ④熱失控(充鼓)
前兩者①、②占了市場上電池損壞的97%。
(1)分析①:鉛酸電池失水的主要原因
鉛酸電池中的電解液像人體中的血液一樣寶貴,電解液一旦喪失,就意味著電池報廢了。電解液是由稀硫酸和水組成的。充電過程中,難以避免失水,充電模式不一樣,失水也不一樣。普通三段式充電模式,充電過程中的失水量是科林脈沖模式的二倍以上!電池除了自然壽命外還有一個失水壽命:單只電池失水超過90克,電池就報廢了。在常溫下(25℃),普通充電器的失水量約為0.25克,而科林脈沖為0.12克。在高溫下(35℃),普通充電器的失水量為0.5克,而科林脈沖為0.23克。按此計算,普通充電器在250次循環后水
電動車充電器
分充干,而科林脈沖在600次循環后水分才會充干。因此,科林脈沖能延長電池一倍以上的壽命。(出示超威公司報告,并畫曲線圖。)
鉛酸蓄電池在充電過程中的***大問題是析氣。
根據美國科學家馬斯(J.A.Mas) 對鉛酸電池充電過程中析氣原因和規律的研究,為達到***低析氣率,鉛酸電池能夠接受充電電流曲線如下:
臨界析氣曲線的公式為:I=I0e-at %h^2
在充電過程中,充電電流超過臨界析氣曲線的部分,只能導致蓄電池電解水反應而產生氣體和溫升,不能提高電池的容量
① 恒流充電階段,充電電流保持恒定,充入電量快速增加,電壓上升;
② 恒壓充電階段,充電電壓保持恒定,充入電量繼續增加,充電電流下降;
③ 蓄電池充滿,電流下降到低于浮充轉換電流,充電電壓降低到浮充電壓;
④ 浮充充電階段,充電電壓保持為浮充電壓;
普通三階段充電******階段為恒流充電,這主要是考慮到電路的設計比較方便,并非為使蓄電池性能***佳而設計。
按照鉛酸蓄電池充電析氣曲線,普通三階段充電過程的析氣情況如圖 :
恒流充電段后期和恒壓充電前期(陰影區),電流超過臨界析氣曲線,造成蓄電池析氣,引起壽命下降。
超過臨界析氣曲線的電流僅使蓄電池產生氣體和溫升,未轉化為電池電量,充電效率也因此降低。
(2)分析②:鉛酸電池硫化的原因
電池長期滯留,充電過程中的長期過充和欠充,使用過程中的大電流放電,極易造成電池的硫化。它的表象為:一放就光,一充就飽,我們把它叫做電池的“假損壞”。硫化物質硫酸鹽粘附在極板上,縮減了電解液與極板的反應面積,使電池容量迅速衰減。失水會加重電池的硫化;硫化又會加重電池的失水,易形成惡性循環。
(3)分析③:鉛酸電池的失衡問題
一組電池由三到四只組成。由于制造工藝問題,無法做到每只電池的******平衡,普通充電器使用平均電流,使容量小的單只電池***先充滿,并形成過充,放電時,這只容量小的電池***先放完,并形成過放。長期如此,惡性循環,使整組電池出現單只落后,從而使整組電池報廢。三段式充電器的浮充階段,有500mA的小電流,它的作用是補償充電,讓電池充飽。但它也帶來兩個副作用:1、充飽后,多余的電流沒有關斷,電能轉化為熱能,進行水分解,加速水份的散發;2、小電流充電,產生的電流分叉很大,更容易造成電池組的不平衡。
(4)分析④:鉛酸電池的熱失控問題
蓄電池變形不是突發的,往往是有一個過程的。蓄電池在充電到容量的80%,左右進入高電壓充電區,這時,在正極板上先析出氧氣,氧氣通過隔板中的孔,到達負極,在負極板上進行氧復活反應:2Pb+O2(氧氣)=2PbO+Q(熱量);PbO+H2SO4=PbSO4+H2O+Q(熱量)。反應時產生熱量,當充電容量達到90%時,氧氣發生速度增大,負極開始產生氫氣,大量氣體的增加使蓄電池內壓超過閥壓,安全閥打開,氣體逸出,***終表現為失水。2H2O=2H2↑+O2↑。隨著蓄電池循環次數的增加,水分逐漸減少,結果蓄電池出現如下情況:
⑴ 氧氣“通道”變得暢通,正極產生的氧化很容易通過“通道”到達負極;
⑵ 熱容減小,在蓄電池中熱容量***大的是水,水損失后,蓄電池熱容大大減小,產生的熱量使蓄電池溫度升高很快;
⑶ 由于失水后蓄電池中超細玻璃纖維隔板發生收縮現象,使之與正負極板的附著力變差,內阻增大,充放電過程中發熱量加大。經過上述過程,蓄電池內部產生的熱量只能經過電池槽散熱,如散熱量小于發熱量,即出現溫度上升現象。溫度上升,使蓄電池析氣過電位降低,析氣量增大,正極大量的氧化通過“通道”,在負極表面反應,發出大量的熱量,使溫度快速上升,形成惡性循環,即所謂的“熱失控”。
